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Abstract 

Pursuant to a previous report [1], an effort has been made to continue 
to find higher performance materials for the design of windshields. A 
product that the U.S. Army Research Laboratory provides the test 
and evaluation community is a yawsonde, now termed "diagnostic 
fuze" or "D-fuze". This device is capable of sensing the inertial 
environment of a cannon-launched projectile and telemetering the live 
data to a ground station. In order to telemeter data in flight, the 
antenna has to radiate through a protective windshield. This 
windshield is not only transparent to radio frequency radiation but is 
also a means of ballistic and thermal protection. 

A recent flight experiment with a prototype artillery projectile 
revealed a weakness of the nylon 66 windshields to "blow-by " gases. 
The windshields were designed to survive aero-pressures attributable 
to Mach 3 launch and flight with a significant safety factor. However, 
blow-by effects were never considered. 

A cursory study has been performed on selected extruded bar stock 
polymers, which are readily available without our having to consult a 
compounding source, for maduning windshields for D-fuzes of 
various geometries. Ultem® 2300 appears to provide the best 
mechanical, thermal, and electrical properties of the studied polymer 
materials. However, depending on the thickness of the geometry, a 
designer may want to reconsider using unfilled Ultem® 1000. The 
cross section of the geometry reduces to a range near 0.03125 inch; 
there may not be enough glass fiber to reinforce the polyetherimide 
matrix. Further literature research indicated that the ogive of the 
M762 fuze is made from injected molded polyetherimide with 30% 
glass filler. 

1 Propulsion gases that leak past the projectile's obturator. In addition to the air already being pushed by 
the launching projectile, these gases increase the total pressure on the windshield. 
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POLYMERIC MATERIAL STUDY FOR THE D-FUZE WINDSHIELD 

1.   Introduction 

Pursuant to an earlier U.S. Army Research Laboratory (ARL) report [1], an effort 
has been made to find higher performance materials for the design of 
windshields. A product that ARL provides to the test and evaluation community 
is a yawsonde, which is now termed "diagnostic fuze" or "D-fuze". This device 
is capable of sensing the inertial environment of a cannon-launched projectile 
and telemetering the live data to a ground station. This device, as seen in 
Figure 1, is normally screwed onto an artillery shell. 

Figure 1. Schematic of a D-Fuze. 

In order to telemeter data in flight, the antenna has to radiate through a 
protective windshield. This windshield is not only transparent to radio 
frequency radiation but is also a means of ballistic and thermal protection. 
Figure 2 shows the geometry of the windshield. 

A recent flight experiment with a prototype artillery projectile revealed a 
weakness of the nylon 66 windshields to "blow-by1" gases. 

The windshields were designed to survive aero-pressures attributable to Mach 3 
launch and flight with a significant safety factor. However, blow-by effects were 
never considered. Previous analysis indicated that the windshield should survive 
1000 psi for these effects. This analysis used standard material properties based 
on certain American Society for Testing Materials (ASTM) standards: ASTM 
D638 for tensile modulus and D790 for flexural modulus. However, the flight 
experiment indicated differently. This prompted an investigation into the actual 

'Propulsion gases that leak past the projectile's obturator. In addition to the air already being 
pushed by the launching projectile, these gases increase the total pressure on the windshield. 



properties of the nylon 66. This report covers the various material experiments to 
determine a new material for the D-fuze windshield. 
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Figure 2. Schematic of a D-Fuze Windshield. 

2.   Background 

Table 1 displays the material properties of various materials used in this study. 
These materials specifically are 

• Nylon 66, which is unfilled. This semi-crystalline material is very 
common with a variety of manufacturers. 

• Nylatron® GSM Blue contains finely distributed particles of 
molybdenum disulphide to enhance its bearing and wear behavior without 
impairing the impact and fatigue resistance inherent in unmodified cast nylon 
grades (http://www.dsmepp.eom/products/europe/nylons_europe.html# nytr 
gsm). 

• Unfilled polycarbonate is a thermoplastic resin that is very common 
with a variety of manufacturers such as General Electric or Bayer. 

• Cycolac® acrylonitrile butadiene stryrene (ABS) is an unfilled 
thermoplastic consisting of (poly)ABS. 

• Zytel® ST801HS is an unfilled heat-stabilized toughened nylon. 



• Ultem® 1000, an unfilled amorphous polyetherimide, is manufactured 
by General Electric Plastics. 

• Ultem® 2300 is an amorphous polyetherimide, with 30% glass 
reinforcement. 

• Victrex® polyetheretherketone (PEEK™), with 40% glass fiber 
reinforcement, is a polyetheretherketone, glass-reinforced, semi-crystalline 
polymer. 

• Polyimide has 40% glass fiber reinforcement. This particular 
combination is available at RTP company. 

Table 1. Material Properties of Studied Polymers 

Nyla-       Poly- PEEK™     Polyi- 
tron®      carbo- 40% long     mide 

Nylon     GSM       nate Cycolac®     Zytel®    Ultem® Ultem®     glass 40% glass 
6/6 Blue Unfilled ARABS     ST801HS     1000       2300 fiber fiber 

Property 

Specific 1.15       1.15 1.28 1.04 1.15 1.28        1.51 1.62 1.63 
Gravity 

Flexural 450,000    500,000       350,000        345,000 150,000*    500,000    800,000      2,000,000      1,750,000 
Modulus of 
Elasticity 
(psi) 

Flexural        15,000    15,000       13,000        11,748 N/a 20,000    30,000      40,000        41,000 
Strength 
(psi) 

158 392 410 >500 630 

N/A        419 419 N/A N/A 

Heat 200 N/A 290 172 
Deflection 
Temperature 
264 psi (F) 

Tg-Glass N/A N/A 293 N/A 
Transition 
(amorphous) 
(F) 

Melting 
Point 

500 520 N/A N/A 

(crystalline) 
(F) 

Water 0.3 .22 .2 N/A 
Absorption 
Immersion, 
24 hours 
%bywt. 

Dielectric 3.6 N/A 3.17 N/A 
constant, 

500 N/A      N/A        N/A N/A 

N/A        0.25        0.18 0.1 0.08 

N/A        3.15        3.7 N/A 3.6 

106 Hz 



Materials such as Nylatron®, polycarbonate, Zytel®, and cycolac® were 
previously used in windshield fabrication. These materials were thought to be 
less durable to launch stress or to areo-dynamic heating. An early drawing 
schematic of an injection molded windshield, dated 1972, required Zytel®, which 
is a modified nylon. Other early windshield designs required injection molded 
cycolac®. Apparently, because of low volume production runs and the costs of 
molds, injection molding was discarded, and fabrication of the windshields 
required machining from previously extruded or cast bar stock material. Current 
fabrication is based on available bar stock material. Based on this, PEEK™ and 
polyimide, both with 40% glass, were eliminated because they were too 
expensive for distributors to stock. 

In addition to mechanical, electrical, and thermal properties, water absorption 
was examined. The asterisk (*) on the Zytel® flexural modulus of elasticity 
indicates that this quantity was measured in 50% relative humidity. With less 
water absorption (0.2% moisture content by weight), mechanical properties 
improve significantly. The flexural modulus is on the order of 250,000 psi. 

3.   Experiment 

3.1   Windshield Crush Experiments 

Experiments consisted of crushing windshields of very similar geometries, yet 
different materials. In addition, three-point flexural investigation of Ultem® 1000 
and 2300 material was performed as a verification. Crushing was performed with 
an Instron 4505 frame. The windshield was placed between the platens, and the 
cross-head speed was set for 0.05 in./min. Data were acquired with Series DC™ 
software. 

Several nylon 66 windshields were crushed to determine repeatabilty of the 
experiment. Figure 3 shows the linear regions of those experiments. 

Two experiments used windshields from an old fabrication run, and the other 
two came from a newer run. No significant difference was observed, so all the 
plots were averaged. Data from the average curve were used to calibrate a finite 
element analysis (FEA) of the nylon 66 windshield. The modulus of elasticity was 
adjusted until the model results correlated with the linear crush experiment 
average results. The FEA indicated that the nylon 66, which has a modulus of 
450,000 psi, based on ASTM 790 standard, had a reduced modulus of 260,000 psi. 
The reason for this is because of the moisture absorption of nylon 66. Water 
degrades the strength of nylon 66 by interfering with the hydrogen bonds of the 
polymer (personal communications, Steve McKnight, ARL, April 2001). In 
addition, the moisture causes swelling of the material, which makes it difficult to 



maintain dimensional tolerances. The hygroscopicity of the nylon 66 caused the 
windshields to absorb moisture within days. During fabrication runs, the 
windshields fit the aluminum nacelles and passed the acceptance check. Yet, 
when a D-fuze was assembled, the parts no longer fit together, requiring effort of 
the assembler to screw the windshield onto the nacelle. 

Linear Force/Deflection Range of Nylon Radome 

T 
30 35 40 45 50x10"3 

deflection (in) 

Figure 3. Linear Force Deflection Range of Nylon 66 Windshield Crush 
Experiments. 

Based on the newer modulus, the amount of blow-by pressure that the nylon 66 
windshield could survive was 750 psi. The need for a new windshield design 
became apparent. However, packaging design constraints dictate that the 
geometry could not change significantly. What was needed was a material 
change and a manufacturing change. 

Several polymers were considered to replace nylon 66. Most of these materials 
were not readily available in cylinder stock but were available in pellet form for 
use in injection molding. The injection molding of the windshield with glass- 
filled resins could provide an improvement in mechanical properties. This 
process would orient the glass fibers in the axial direction of the windshield, 
allowing for more strength against buckling (personal communications, Thomas 
Mulkern, ARL, April 2001). However, because of the limited quantity of the 
fabrication runs, injection molding was too expensive. The one material in this 
study that was readily available in cylinder stock was Ultem® 2300. A quick 
fabrication run of the windshield design with this material was performed. As 
one can see in Figure 4, the nylon 66 did not fare as well as the other materials. 
The newer material, Ultem® 2300, did extremely well. 



Based on Figure 4, one can see a drastic improvement in the strength of the 
windshield. The new windshields were assembled with the D-fuzes and were 
fired in the same type of flight experiment in which the nylon 66 windshields 
failed. The amount of blow-by pressure from both series of experiments has not 
been quantified, but the Ultem® 2300 windshields survived. 
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Figure 4. Radome Crush Experiment Results. 

3.2   Three-Point Bending Experiments 

As a verification, three-point bending experiments were performed on Ultem® 
1000 and 2300 to verify the actual flexural modulus of elasticity of the specific 
stock from which parts were being made. Early cross-referencing of various data 
sheets for Ultem® 2300 indicated a significantly varying flexural modulus, even 
though the same standard (ASTM D790) was used. Since Ultem® 2300 contains 
30% glass fibers, this report surmised that the thinner the specimen became, the 
less glass content in the matrix; therefore, at some thickness, the glass-filled resin 
should behave like the unfilled resin. Each experiment contained four or five 
evaluated specimens. Table 2 displays the results of the experiments. 

All these specimens were taken from the same piece of 2-inch bar stock. Also, the 
specimens were cut from a 1- by 1-inch area in the center of the stock. Specimens 
were also cut lengthwise with respect to the axis of the bar stock. As one can see, 
the variation in flexural modulus of elasticity between the 0.125- and 0.0625-inch 
specimens would indicate a non-uniformity with which the fibers are dispersed. 
The interior region was initially chosen for specimen harvest because the fiber 
orientation was thought to be more random as opposed to being aligned axially 



nearer the surface of the extruded stock. An average of the two moduli would be 
814,500 psi, which is very close to what the specification sheet indicates. 

Table 2. Flexural Bending Experimental Results 

Ultem®2300    Ultem® 2300    Ultem®2300      Ultem®1000    Ultem®1000 
0.125 in. thick   0.0625 in. thick   0.03125 in. thick   0.0625 in. thick   0.03125 in. thick 

Average 
properties 

Displacement 
at Yield (in.) 

0.300 0.132 0.100 0.178 0.109 

Stress at 
yield (psi) 

28,100 36,400 26,500 31,300 22,200 

Strain at 
yield (iru/in.) 

0.056 0.050 0.075 0.067 0.081 

Flexural 
Modtdus of 
Elasticity 
(psi) 

670,000 959,000 486,000 628,000 343,000 

As the Ultem® 2300 specimen becomes thinner, the results show that the flexural 
modulus is the same as for unfilled Ultem® 1000. This may indicate that the fiber 
content in the sample is so low that the filled resin may as well be unfilled. The 
point of this is that if a design requires a certain thickness in the geometry, an 
unfilled resin may not be warranted specifically for Ultem®. 

4.   Conclusion 

A cursory study has been performed on selected extruded bar stock polymers, 
which are readily available for machining windshields for D-fuzes of various 
geometries. Ultem® 2300 appears to provide the best mechanical, thermal, and 
electrical properties of the studied polymer materials. However, depending on 
the thickness of the geometry, a designer may want to reconsider using unfilled 
Ultem® 1000. If the cross section of the geometry reduces to a range near 
0.03125 inch, there may not be enough glass fiber to reinforce the polyefherimide 
matrix. Further literature research indicated that the ogive of the M762 fuze is 
made from injected molded polyefherimide with 30% glass filler. 



5.   Future Work 

Another empirical means of validating the analyses, such as subjecting the 
windshields to a static pressure load until failure, should be performed. More 
intensive efforts to find higher performance material solutions for the design of 
windshields for future combat system-like projectile launch and flight 
conditions. Materials that have functional temperatures in the region of the 
adiabatic wall temperatures of supersonic and hypersonic vehicles need to be 
studied. Some of these materials may be ceramics, composites, and other 
polymers. Antenna radiation patterns and intensity measurements of the 
material and the geometry also need to be made. In addition, fabrication 
procedures should be studied. To achieve the best material properties from an 
engineered polymer, the parts should probably be injection molded rather than 
machined from a stock shape. 
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STYCAST® 1090 SI ELECTRO-MECHANICAL 
PROPERTIES VERIFICATION 

Recently, the author was asked to look into the effects of moisture absorption on 
Stycast® 1090 SI. Stycast® 1090 SI is a low density, syntactic foam, epoxy 
encapsulant, which is commonly hardened with the 23LV catalyst. ARL 
frequently encapsulates electronics with Stycast®. The encapsulation, however, is 
not performed in desiccated laboratory conditions. There were concerns that the 
resin might be inherently hygroscopic or that moisture might enter during the 
mixture process, which could degrade electrical and/or mechanical properties. 
Even though the manufacturer (Emerson and Cumings) claims that the moisture 
absorption is negligible, simple electrical and mechanical property 
measurements were made to verify the manufacturing properties. 

First, a determination of the dielectric constant and the loss tangent was made on 
a sample of cure Stycast®. The epoxy had been hardened for more than 24 hours 
at 25° C and 50% to 70% humidity. The experiment used a coaxial probe 
technique with a Hewlett-Packard 85070B measurement device. The dielectric 
measurement was from 0.2 GHz to 3 GHz. The dielectric constant ranged from 
2.5 to 2.4 and the loss tangent averaged 0.033 for this range. The specification 
sheet has dielectric constants in increments: 60 Hz, 1 kHz, and 1 MHz, with the 
respective dielectric constants as 3.7, 3.1, and 2.9. The experimentation method 
for the specification sheet is ASTM D150. The downward trend indicates that the 
dielectric constant might be -2.5 at 1 GHz, and this agrees with the specification 
sheet, even during the environmental conditions. The loss tangent averaged 0.01 
to 0.02 for the same increments, which puts the results in close agreement with 
the specification sheet. 

Second, a three-point bending experiment that employs ASTM D-790 standards 
was used to measure flexural stress and flexural modulus of elasticity. Specimens 
were created as per the ASTM requirements during 25° C and 50% to 70% 
humidity environmental conditions. Unfortunately, the specification sheet does 
not include the flexural modulus of elasticity. The manufacturer was queried for 
this property but they declined. The only property available to compare was the 
flexural strength. However, there were two values for this property of Stycast® 
1090, with the 23LV catalyst. Again, the manufacturer was queried, but no 
response has been made. The two values listed for flexural strength are 4000 psi 
(28 MPa) and 6900 psi (48 MPa). The experiment used seven samples, of which, 
the average flexural strength was 7070 psi (49 MPa). Based on both specifications, 
the Stycast® does not appear to lose any strength. 

In conclusion, Stycast® 1090 SI appears to maintain the manufacturer's 
specifications for dielectric constant, loss tangent, and flexural strength under 
fluctuating temperature and humidity. Since "...most materials today are tested 
at 1 MHz,...there is still a lot of uncertainty about how materials perform at 

15 



2.4 GHz" [2]. The electrical experiment verifies the dielectric properties of 
Stycast® at high frequency. 
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